Sonnar T* f/4-150 mm

HASSELBLAD

Many photographers consider the 150 mm Sonnar ${ }^{\oplus} \mathrm{T}^{*} \mathrm{f} / 4$ lens the most important supplementary lens for the Hasselblad SLR camera system. Even at full aperture the lens covers the entire $6 \times 6 \mathrm{~cm}$ format and produces pictures of excellent sharpness and brilliance. The compact design which is
characteristic of all Sonnar ${ }^{\circledR}$ lenses offers excellent corner-tocorner illumination of the image field.
The 150 mm Sonnar ${ }^{\oplus} \mathrm{T}^{*} \mathrm{f} / 4$ lens is above all suited for portraiture, press, sports, and stage photography. The high speed of this lens allows short exposure times and thus hand-held exposure also in unfavorable light conditions, e.g. on the stage or for documentary series in bad weather.

Cat. No. of lens:

Number of elements: Number of groups: Max. aperture: Focal length: Negative size: Angular field 2 w : Spectral range: Aperture scale: Mount:
Filter connection:
Weight:
Focusing range: Reproduction ratio:

101114

5
3
f/4
151.2 mm
$56.5 \times 56.5 \mathrm{~mm}$
diagonal 29°, side 21°
visible spectrum
$4-5.6-8-11-16-22-32$
Prontor CF
bayonet for Hasselblad series 60
approx. 785 g
∞ to 1.4 m 0 to 1:7.1

Close-limit field size:
Entrance pupil:
Position:
Diameter:
Exit pupil:
Position:
Diameter:
Position of principal planes:
H:
H^{\prime} :
Back focal distance:
Distance between first and
last lens vertex:
$400 \times 400 \mathrm{~mm}$
63.8 mm behind the first lens vertex 37.4 mm
32.1 mm in front of the last lens vertex 28.0 mm
11.6 mm behind the first lens vertex 70.8 mm in front of the last lens vertex 80.4 mm
81.8 mm

Performance data:

Sonnar ${ }^{\circledR}$ T* $^{*} / 4 \mathrm{f}=150 \mathrm{~mm}$

No. 101114

1. MTF Diagrams

The image height u - calculated from the image center - is entered in mm on the horizontal axis of the graph. The modulation transfer T (MTF = Modulation Transfer Factor) is entered on the vertical axis. Parameters of the graph are the spatial frequencies R in cycles (line pairs) per mm given at the top of this page.
The lowest spatial frequency corresponds to the upper pair of curves, the highest spatial frequency to the lower pair. Above each graph, the f-number k is given for which the measurement was made. "White" light means that the measurement was made with a subject illumination having the approximate spectral distribution of daylight.

Unless otherwise indicated, the performance data refer to large object distances, for which normal photographic lenses are primarily used.

2. Relative illuminance

In this diagram the horizontal axis gives the image height u in mm and the vertical axis the relative illuminance E, both for full aperture and a moderately stopped-down lens. The values for E are determined taking into account vignetting and natural light decrease.

Modulation transfer T as a function of image height u. Slit orientation: tangential - - sagittal White light. Spatial frequencies $R=10,20$ and 40 cycles $/ \mathrm{mm}$

v Distortion in \% of image height u

3. Distortion

Here again the image height u is entered on the horizontal axis in mm . The vertical axis gives the distortion V in $\%$ of the relevant image height. A positive value for V means that the actual image point is further from the image center than with perfectly distortion-free imaging (pincushion distortion); a negative V indicates barrel distortion.

